Online Action Detection

نویسندگان

  • Roeland De Geest
  • Efstratios Gavves
  • Amir Ghodrati
  • Zhenyang Li
  • Cees Snoek
  • Tinne Tuytelaars
چکیده

In the computer vision problem of online action detection, the goal is to detect the start of an action in a video stream as soon as it happens. For instance, if a child is chasing a ball, an autonomous car should recognize what is going on and respond immediately. This is a very challenging problem. First, only partial actions are observed. Second, there is a large variability in negative data. Finally, in real world data, large within-class variability exists. This problem has been addressed before, but only to some extent. First, we introduce a realistic dataset composed of 27 episodes from 6 popular TV series. The dataset spans over 16 hours of footage annotated with 30 action classes, totaling 6,231 action instances. Second, we analyze and compare various baseline methods with a newly-introduced evaluation protocol, showing this is a challenging problem for which none of the methods provides a good solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

Online analysis of local field potentials for seizure detection in freely moving rats

Objective(s): Seizure detection during online recording of electrophysiological parameters is very important in epileptic patients. In the present study, online analysis of field potential recordings was used for detecting spontaneous seizures in epileptic animals.Materials and Methods: Epilepsy was induced in rats by pilocarpine injecti...

متن کامل

Online Detection of Hydrodynamic Changes in Fluidized Bed using Cross Average Diagonal Line

Online detection of hydrodynamics of gas-solid fluidized bed was characterized using pressure fluctuations by cross recurrence plot (CRP) and cross recurrence quantification analysis (CRQA). Experiments were conducted in a lab scale fluidized bed of various particle sizes 150 μm, 280 μm and 490 μm at different gas velocities. Firstly, pattern changes of cross recurrence plot were discussed and ...

متن کامل

Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines

Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016